Definition

RAID 10 (RAID 1+0)

Contributor(s): Erin Sullivan

RAID 10, also known as RAID 1+0, is a RAID configuration that combines disk mirroring and disk striping to protect data. It requires a minimum of four disks, and stripes data across mirrored pairs. As long as one disk in each mirrored pair is functional, data can be retrieved. If two disks in the same mirrored pair fail, all data will be lost because there is no parity in the striped sets.

RAID 10 provides redundancy and performance, and is the best option for I/O-intensive applications -- including email, web servers, databases and operations that require high disk performance -- and organizations that require little to no downtime.

The high performance of RAID 10, and its ability to perform many write options, makes it suited to highly used, mission-critical database servers. However, the four-disk minimum requirement makes RAID 10 a costly choice, and it may be overkill for small businesses or consumer use.

How it differs from other forms of RAID

The two-number format of RAID 10/1+0 is known as a nested RAID configuration because it combines two RAID levels to enhance performance. Other nested RAID levels are 01/0+1, 03/0+3, 50/5+0, 60/6+0 and 100/10+0.

While RAID 1+0 is similar to RAID 0+1, the reversed order of the numbers indicates the two RAID levels are layered in the opposite order. RAID 1+0 mirrors two drives together and then creates a striped set with the pair. RAID 0+1 creates two stripe sets and then mirrors them. While both RAID levels use the same number of drives, they are not synonymous.

RAID 10 (RAID 1+0)

According to manufacturer specifications and independent benchmarks, RAID 10 provides lower latency and superior throughput to all other RAID levels, except for RAID 0.

Nested RAID levels chart

Due to disk mirroring, RAID 10 capacity is reduced when compared with RAID levels that don't involve mirroring. Because of this, levels such as RAID 5, 50 (5+0) and 6 may be considered as alternatives. However, when rebuilding with RAID 10, only the surviving mirror of all the drives is read, while non-mirroring levels require all remaining drives to be read. The heavier lifting required by RAID 5, 50 and 6 could therefore result in a higher risk of failure and data loss.


Learn the differences among RAID 5,
RAID 6 and RAID 10.

RAID 6 stripes data and calculates parity two times, storing these results in different areas of the disk. This can help protect against two simultaneous disk failures, but the compute power needed to make two parity calculations for every write operation slows RAID 6 significantly.

JBOD, or just a bunch of disks, may also be considered as an alternative to RAID 10. JBOD does not use striping or parity, but it can treat multiple disks as one entity and combine their capacity. While JBOD can be less expensive than RAID, they have few other advantages. The lack of redundancy with a JBOD arrangement uses all available drive capacity but puts data at higher risk for corruption.

Generally, read and write operations on RAID arrays are faster, and data streams can be divided and stored concurrently. JBOD data can only be stored on one disk at a time.

Advanced data mirroring

Disk mirroring duplicates data to multiple hard drives connected to a single controller. It is a form of backup used in some RAID arrays and can be hardware- or software-based.

Unlike RAID 0 and RAID 1, RAID 1+0 combines striping and mirroring to create redundancy. As long as an array has an even number of hard disk drives, these two actions can be used together. While mirroring can reduce the amount of available capacity in a RAID 1+0 array, it creates another layer of protection against data loss.

With data mirroring, RAID 10 arrays can maintain multiple copies of data, allowing for a quicker recovery in the event of a failure. By striping mirrored data, RAID 10 combines the speed boost of striping with the added redundancy of mirroring.

Hardware RAID vs. software RAID

RAID 10 can be deployed by hardware or software. Hardware RAID requires a RAID controller inside a motherboard slot that connects the drives, while software RAID uses a utility application to manage the RAID configuration.


Anders Brownworth from The Well
Tempered Hacker explains the differences
between hardware and software RAID.

Hardware RAID often costs more than a software option, but it can have superior performance. This approach can sometimes replace disks without shutting down the server, or hot swapping. With hardware RAID, higher write throughput speeds are supported, as well as faster recovery of lost data. Because of this, hardware RAID is the preferred option when dealing with mission-critical servers.

Software RAID is less expensive and less complex to deploy. Most operating systems (OSes) include software RAID support. However, while hardware RAID has a battery backup in case of power failure, software RAID does not. Software RAID is preferred by small businesses because it offers higher performance in standard RAID levels, but it does not offer nested levels like RAID 10.

RAID 10 with SSD

While RAID was created for hard disks, there are some RAID levels -- such as RAID 10, 5 and 6 -- that can be used on solid-state drives (SSDs). For example, RAID 10's method of striping mirrored sets can be beneficial in a flash system. However, the majority of traditional RAID levels are not optimized for flash environments.

Write-heavy RAID levels like 5 and 6 may cause latency and performance problems when used with SSDs. Since each write on a flash drive requires an erase, and erase cycles are limited on SSDs, the additional writes created by RAID 5 and 6 can seriously affect flash performance.

The relatively higher cost of RAID 10 may deter consumers from combining it with SSDs, which can also be considered expensive. However, as the cost of flash goes down, this may become less of a deterrent over time.

Considerations for using RAID 10

There are pros and cons to using a RAID 10 configuration. While RAID 1+0 writes to two disks at once, it should not be considered a replacement for traditional data backup. If the OS is corrupted, the data on both disks is at risk for corruption, so RAID should not be considered the last line of defense against data loss. RAID 10 can protect against single drive failures, but a secure data backup plan should also be in place.

The faster rebuild times and features like hot swapping disks make RAID 10 an appealing option, while its reduced capacity may work against it.

To decide whether or not to use RAID 10, consider the following points:

  1. What is my budget?
  2. How much capacity do I need?
  3. What are my read/write speed requirements?
  4. How much rebuild and recovery time can I afford?
This was last updated in May 2018

Continue Reading About RAID 10 (RAID 1+0)

Dig Deeper on Storage management and analytics

Join the conversation

2 comments

Send me notifications when other members comment.

Please create a username to comment.

What features of 1+0 make it a better option than other RAID levels?
Cancel
Hello Everyone,
Do i need to reinstall configure raid 10 and reinstall OS if one HDD fail.
Cancel

-ADS BY GOOGLE

File Extensions and File Formats

SearchDisasterRecovery

SearchDataBackup

SearchConvergedInfrastructure

Close