This article can also be found in the Premium Editorial Download "Storage magazine: Hot tips for buying storage technology."

Download it now to read this article plus other related content.

Intelligent tape cartridges
Almost all storage devices are becoming more intelligent, and tape cartridges are no exception. The LTO and AIT tape families have for some time shipped with memory chips embedded in the cartridges with the most current tapes shipping with a radio frequency (RF) interface. LTO-Ultrium cartridges contain a 32KB RF-capable semiconductor while the AIT media families come with a similar RF-based 64KB memory chip. These cartridge-based chips store pertinent information about the tape, such as how many times the tape has been used, a log of the information stored on the cartridge and index information. This information becomes invaluable when moving tapes between different tape libraries or when used by different backup products.

RF chips also reduce wear and tear on both tape cartridges and tapes. Instead of physically handling the tape and inserting it into a reader, the RF signal transmits the information contained on the cartridge chip to a receiver either in the tape library or in any third-party device. This RF transmission is a cost-effective way to catalog and track tapes as they move around on site or off site.

However, the key for RF chip technology to succeed centers on the adoption of standards for all tape cartridges. For example, due to their different capacities, the LTO and AIT chips hold different amounts of data. They also store data on the tape in

Requires Free Membership to View

different formats (linear vs. helical) and use the chips differently to communicate to the tape drive how to retrieve data stored on the tapes. As a result, until RF-enabled chips become standardized across the most widely used tape formats, the ability to take advantage of this technology is limited. In addition, no third-party vendors provide readers for either LTO or SAIT RF technology and the DLT family of tapes has yet to incorporate a chip into their cartridges. In other words, buyer beware: This promising technology is something to watch at this stage, but not to be viewed as a product differentiator.

Tape's downside
The embedded chip highlights current attempts by tape manufacturers to reduce the costs associated with managing tape. Accounting for where every tape is--whether it's in use, lost, damaged, purchased, expired, on-site, off-site or in the library--and what data is on it quickly eats up a lot of time and labor. It's a poorly kept secret that most companies never know where all of their tape cartridges are or what's on them.

Tape vendors are taking some steps to address this. The LTO and AIT RF-enabled chips and new management software, such as DLTSage for DLT media, should help alleviate some of this management pain and provide better reporting tools, but most companies are still struggling to achieve effective tape management. To do so, organizations must standardize on one family of tape and its most current release to take advantage of these tools. Even then, organizations must train personnel to develop proficiency on these tools. And data must be migrated from older tapes to these newer tape formats, a challenging and time-consuming task.

And of course, there's the tape-restore problem. Storage managers should carefully consider the applications they currently back up on tape, the time it takes to restore the data and the costs of exceeding the agreed-upon recovery time frames. While some administrators may still have the luxury of "best faith" recovery agreements (where their users accept whatever time it takes for them to recovery the data and get the application operational), they should no longer assume this will remain a given going forward.

There are just too many uncontrollable variables and hidden costs for storage managers to confidently state that they can recover data or control costs using only a tape backup solution. Until recently, there were few cost-effective alternatives for backup and recovery, but ATA and Fibre Channel (FC) modular arrays have forever changed the landscape. With the price points for ATA arrays affordable for almost any size organization and the uptime on FC modular arrays now acceptable by most data center standards, users should begin abandoning tape and look to ATA drives for production backup and recovery.

You should consider using tape as a long-term archiving solution. ATA disk fails to provide an off-site store of the data or offer the infinite storage capacity that tape does. Placing the initial backup on ATA disk creates a lengthy window to make a copy of the backup to tape and gives users the ability to take full advantage of current tape speeds and capacities.

A well-managed organization could eliminate many of its current backup and tape management headaches and dramatically cut its costs by properly balancing the deployment of ATA drives and tape technologies.

This was first published in March 2004

There are Comments. Add yours.

TIP: Want to include a code block in your comment? Use <pre> or <code> tags around the desired text. Ex: <code>insert code</code>

REGISTER or login:

Forgot Password?
By submitting you agree to receive email from TechTarget and its partners. If you reside outside of the United States, you consent to having your personal data transferred to and processed in the United States. Privacy
Sort by: OldestNewest

Forgot Password?

No problem! Submit your e-mail address below. We'll send you an email containing your password.

Your password has been sent to: